TMVR

INDICATIONS, DEVICES & DATA

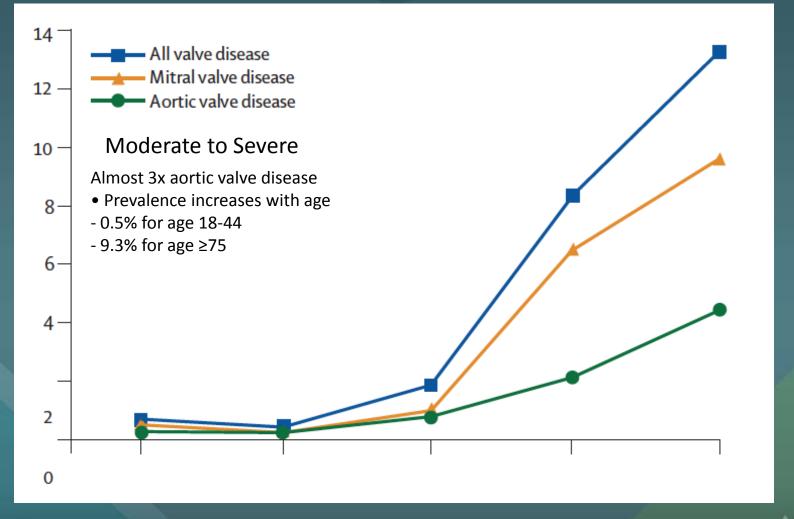
O. Christopher Raffel Cardiology Program, Prince Charles Hospital Queensland, Australia.

INDICATIONS

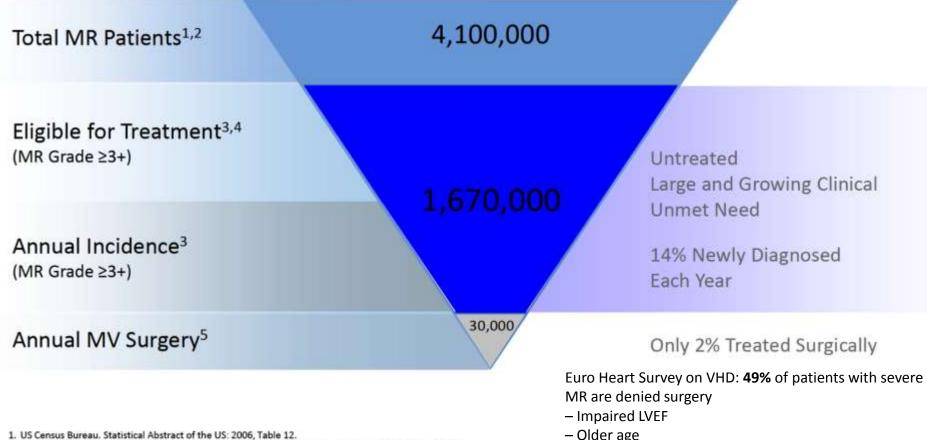
TMVR – UNMET NEED

• High Prevalence – Disease Burden

• Under Treatment


• Treatment beneficial

Current Therapies not meeting needs of all patients


MITRAL VALVE DISEASE PREVELANCE

Nkomo et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006; 368: 1005-1011

A LARGELY UNTREATED POPULATION

- Comorbidities

- 1. US Census Bureau. Statistical Abstract of the US: 2006, Table 12.
- 2. Nkomo et al. Burden of Valvular Heart Diseases: A Population-based Study, Lancet, 2006; 368: 1005-11.
- 3. Patel et al. Mitral Regurgitation in Patients with Advanced Systolic Heart Failure, J of Cardiac Failure, 2004.
- ACC/AHA 2008 Guidelines for the Management of Patients with Valvular Heart Disease, Circulation: 2008
- 5. Gammie, J et al, Trends in Mitral Valve Surgery in the United States: Results from the STS Adult Cardiac Database, Annals of Thoracic Surgery 2010.

TMVR – different patient populations

Primary Degenerative MR (DMR)

Functional (Secondary) MR - Ischemic or Non-Ischemic Cardiomyopathy (FMR)

Calcific Mitral valve disease (CMR)

DMR

Excellent surgical repair results * \blacktriangleright Low mortality - <1% Good clinical benefit & durability Surgical treatment rates ~ 53% Low Rx rates due to • Asymptomatic • Normal LVEF • Patient preference

Co-morbidities with high surgical risk

FMR

>

Medical +/- CRT device therapy primary Rx

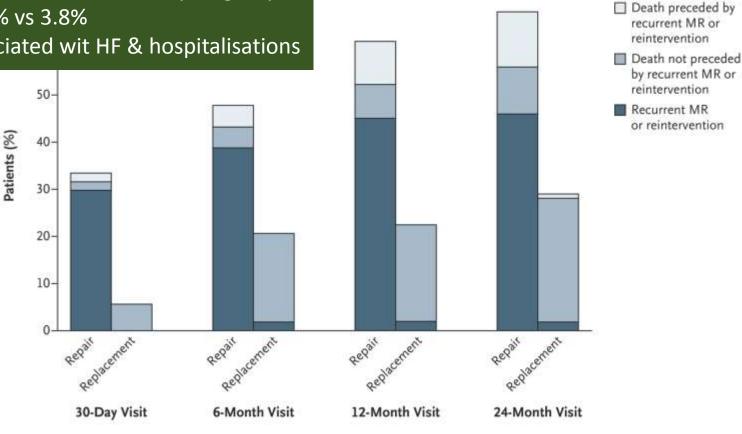
Surgical results of repair/replacement variable & uncertain

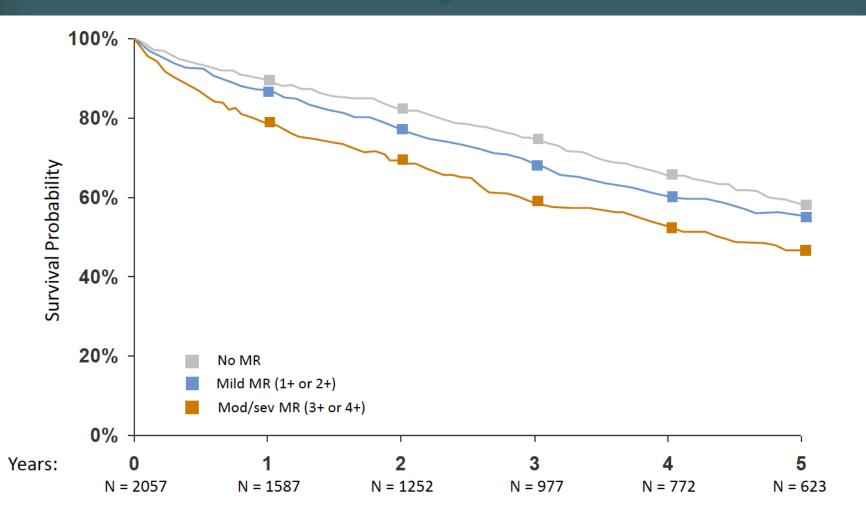
Generally high risk group of patients – clinical benefit of reducing MR maybe

attenuated by surgical risk

Surgical Rx rates for Mod-severe MR ~ 16%

- Low Rx rates due to
 - High surgical risk
 - Low LVEF
 - Co-morbidities
 - Lack of clear benefit/guidelines


Repair compared to Replacement not durable with recurrence of MR



FMR – 2-yr outcomes following surgical Rx

- 251 patients !:! MVR vs repair •
- No survivial difference ٠
- Mod or severe MR in repair group ٠ 58.8% vs 3.8%
- Associated wit HF & hospitalisations •

FMR - Survival stratified to severity of FMR

TCTAP2018

TMVR – INDICATIONS

DMR

- Symptomatic
- High risk for surgical MVR
- TAVR creep.....!

FMR

- Symptomatic
- On full medical & device therapy
- Not requiring CABG

NEXT QUESTION: TMVR vs TMV Repair

TMVR

TMV Repair

"Cimplar"

Mara complay

INDICATIONS WILL EVOLVE WITH DEVICE DEVELOPMENT AND EXPERIENCE

Durability unknown

Still FIM and early clinical trials

Appears durable if initial reduction in MR is good (MitraClip) Established therapy (MitraClip)

TMVR - DEVICES (not a TAVR!)AORTIC STENOSISMITRAL REGURGITATION

Francesco Maisano

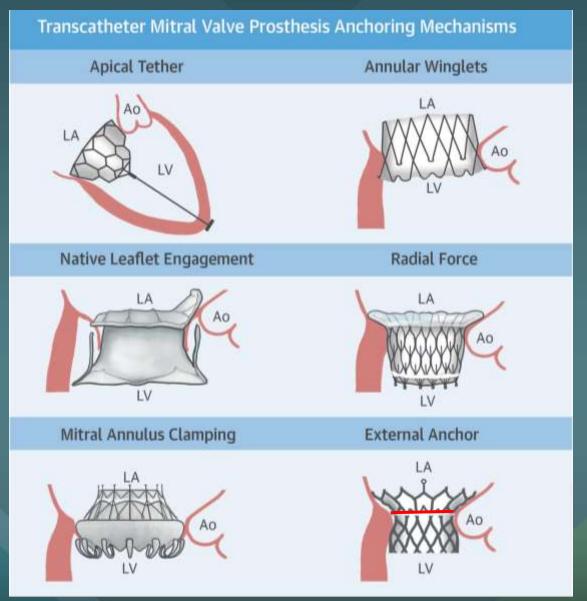
TMVR - THE PERFECT DEVICE!

Longevity/ Durability Large Valve Size

Stable Anchoring

Retrievable Reposition

Large Neo-LVOT


Low Thrombogenecity

Easily Deployable Access Sealing No PVL

CHALLENGES OF TMVR – ANCHORING SOLUTIONS

TCTAP 2018

Regueiro et al. JACC2017 May 2;69(17):2175-2192

TMVR – A SLOW BOAT TO SOME WHERE....? >30 DEVICES

TMVR – CURRENT CLINICAL EXPERIENCE

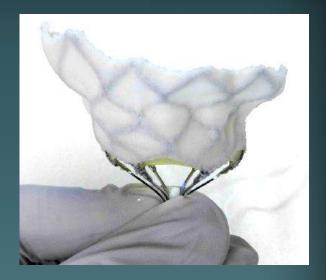
TMV Device	Number
Abbott TENDYNE TMV	>110
INTREPID	50
TIARA	47*
Edwards CardiAQ	16+
CAISSON	15
HIGHLIFE	11
FORTIS	11
NAVI	2

TMVR PATIENT DEMOGRAPHICS (Q4 2017)

Valve	N=	Age	M Sex%	FMR%	NYHA II/III/IV	EF%	STS
Tendyne	75	74.7	67	73	35/61/4	48	7.1
Intrepid	44	73	66	80	14/68/18	42	6.6
Tiara	37	72	80	68	2/84/18	36	9.9
CardiAQ	11	-	-	64	-	-	-
Caisson	15		29	57	78.6(III <i>,</i> IV)	-	-
Highlife	11	69	73	72	-	35	-
Navi	2	-	-	-	-	-	-
TOTAL	225						
TCTAP2018							V CAR

TENDYNE

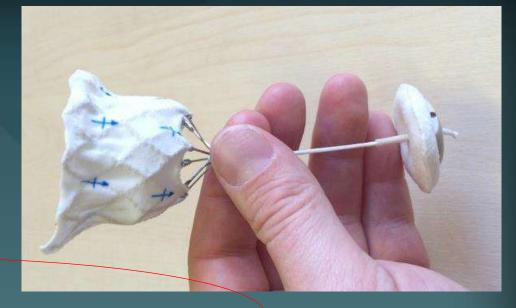
Construction & Shape:


- Self-Expanding Nitinol <u>double frame</u>.
- D-Shaped Outer Frame with anterior cuff
- Designed to conform with native MV anatomy

Leaflets:

• Trileaflet, porcine pericardial valve.

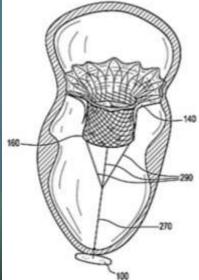
Valve sizes:


Large Valve Size Matrix to Treat Varying Anatomie

TENDYNE

Anchoring:

- Atrial flange
- left ventricular apical tethered system with apical pad


Effects on LVOT

• Some limitations especially with v 1.0, excluding small LVOT's and wide AM angles.

Deployment:

- Fully retrievable and repositionable.
- Controlled deployment but not "simple"
- Usually no need for pacing.

TMVR – TENDYNE

Access

• Transapical

Delivery system size:

• 36 F

TENDYNE

Strengths

- Fully retrievable, repositionable, controlled deployment\
- Well tolerated hemodynamically, no need for pacing
- Excellent valve performance -effective control of MR
- Low 30day mortality and adverse outcomes

Weaknesses/limitations

- Small observational experience, short-term follow-up
- Currently 36F transapical system complex deployment

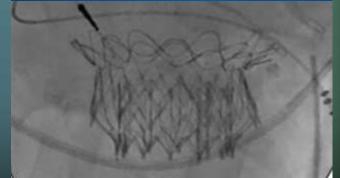
• Longer term consequence of TA + apical tether.

INTREPID (Medtronic)

Construction & Shape:

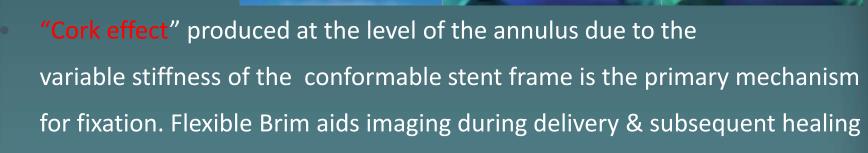
- Self-Expanding Nitinol frame.
- Dual stent design with conformable Outer Stent engages the annulus & circular inner stent to house the valve
- Design isolates the inner stent from the dynamic MV anatomy

Leaflets:


• Trileaflet, bovine pericardial valve.

Valve sizes:

- 43 mm, 46 mm, and 50 mm outer diameters
- Circular inner stent: 27mm valve



INTREPID

Anchoring:

 Small cleats on the outer stent also help by engaging with the mitral leaflets and promoting tissue ingrowth

Effects on LVOT

Minimal as stent is short

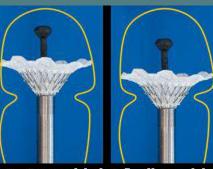
Deployment:

Current design not retrievable

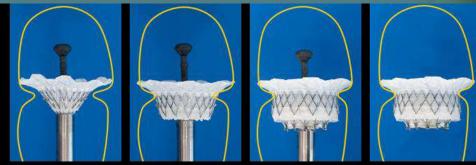
INTREPID

Access

• Transapical (TS & retrievable versions in design)


Delivery system size:

• 35 F



1. Advance into LA

2. Expand brim & align with annulus target

3. Retract to target & deploy

INTREPID: Current status

FIM

Krakov, Poland. Late 2014

Global Pilot Study n =50

US Feasibility trialOngoing

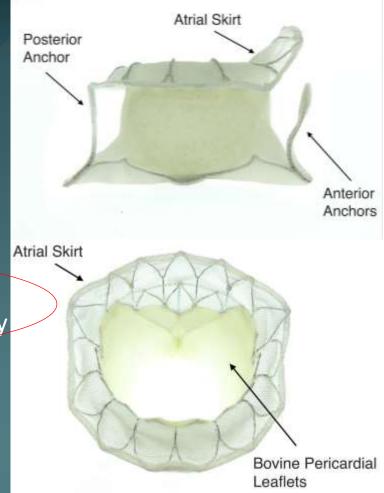
INTREPID

Strengths

- TAVR like: 'Position and Deploy'
- Simple procedure –echo guided
- Lower profile device
- Stability is excellent
- Weaknesses/limitations
- Transapical, non-retrievable
- Anticoagulation
- LVOTO risk?

TIARA

Construction & Shape:


- Self-Expanding Nitinol frame.
- D-Shaped for MV anatomy
- Designed to conform with native MV anatomy

Leaflets:

• Trileaflet, bovine pericardial valve.

Valve sizes:

• 35 and 40 mm devices

TIARA

Anchoring:

- <u>Ventricular an</u>chors, two anterior and one posterior. Fix the valve onto fi brous trigone and posterior annulus – captures AMVL & PMVL
- <u>Atrial skirt/flange</u>

Effects on LVOT

• Minimal. D – shaped, no flaring, short.

Deployment:

- Not retrievable But simple implant procedure
- Usually no need for pacing.
- Not contraindicated in patients with AVR or previous MV surgery

TIARA

Access

- Transapical
- Delivery system size:
- 32 and 36 F
- Sheathless
- Self dilating

TIARA: Current status

FIM implant

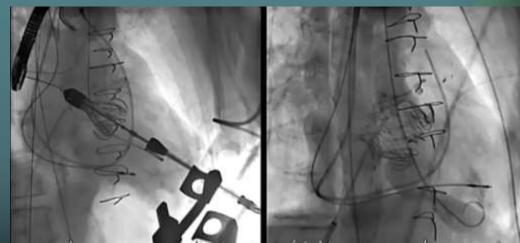
• St Paul's, Vancouver, Canada Jan 2014

Special Access/Compassionate Use (n=21)
Canada, Italy, Germany, Switzerland, Israel

TIARA-I Early Feasibility Clinical Study (n=13)Belgium, Canada, USA

TIARA-II European CE Mark Clinical Study (n=3)Italy, Germany, UK

CardiAQ


Construction & Shape:

- Self-Expanding Nitinol frame.
- Circular
- Fabric skirt

Leaflets:

- Trileaflet, bovine pericardial valve.
 Valve sizes:
- Suitable for native annulus size: 36 to 39.5 mm
- Single valve size: 30 mm at the inflow and 40 mm at the annulus

Atrial anchors

CardiAQ

Anchoring:

- Two sets of opposing anchors, atrial and ventricular. Preserves MVL/chordae
- Ventricular anchors hook around the leaflets

Effects on LVOT

- Device sits relatively high in atrium minimal LVOT obstruction.
 Deployment:
- Controlled (multi stage) deployment
- Accurate positioning
- Self-positioning within native valve annulus, no rotation required.

CardiAQ

Access

- Transeptal & Transapical
 Delivery system size:
- 33 F

CardiAQ: CURRENT STATUS

- Focused on TF TS access
- 3rd generation: Includes lower profile valve for TS
- Durability appears good >3years with good va lve function

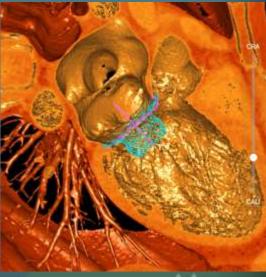
HIGHLIFE

Construction & Shape:

- Self-Expanding Nitinol <u>frame</u>. Circular. Grooved.
- Retrograde transarotic sub-valvular ring (SAI)
- Valve in –ring 2 component concept. Atrial flange and SAI hold valve in place.

Leaflets:

- Glutaraldehyde cross-linked bovine pericardium.
 Valve sizes:
- 31mm valve
- TA access accommodates wide MV annular size 32mm to 48mm


HIGHLIFE

Anchoring:

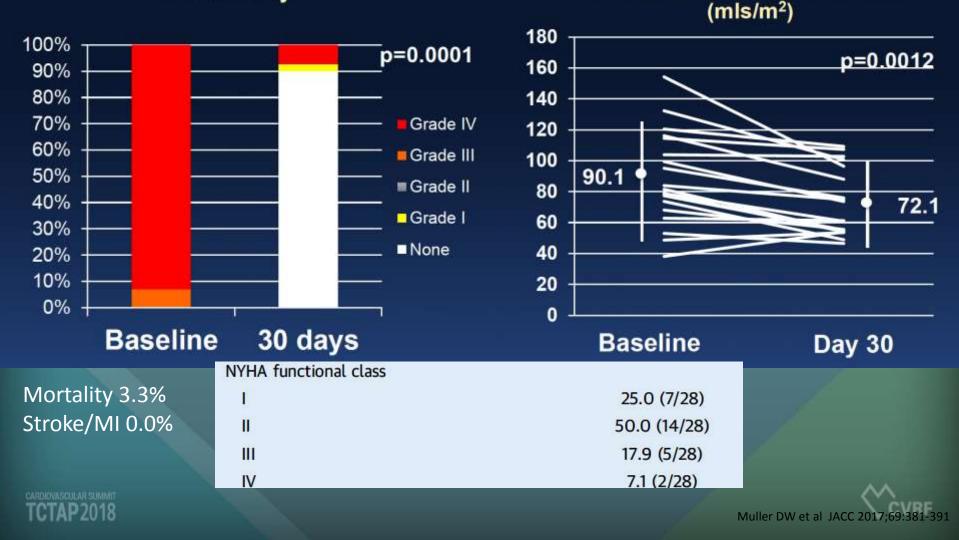
3 month animal explant

(Lange R, Eurointerventi

- Subannular implant [SAI]) around the native leaflets holds the grooved v alve stent
- Together with the native leaflets provide complete paravalvular sealing Effects on LVOT
- Minimal. LV extension small and no flaring.
 Deployment:
- Self centering. Not dependant on radial force for anchor
- No rotation required.
- Not retrievable.
- SAI via FA, Valved stent into ring via TA, Tatrial or TS.

I.I.

0



TENDYNE: Global Feasibility Study @ 30d (n=30)

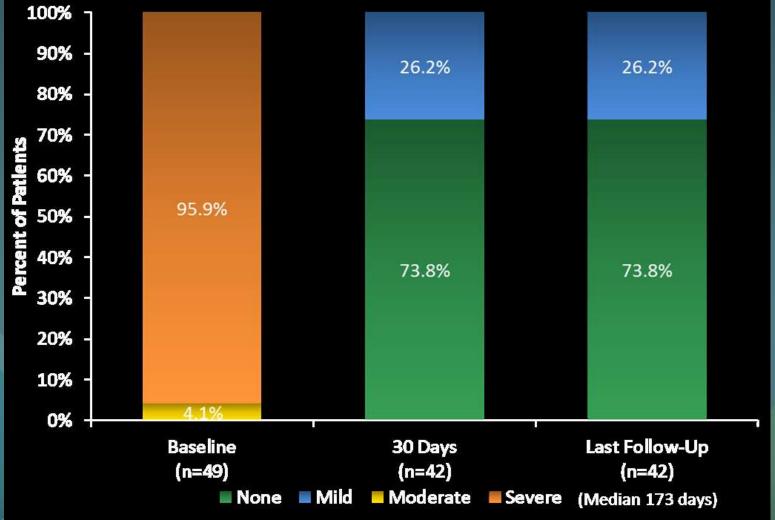
LV End-Diastolic Volume Index

MR severity

TENDYNE: GF Study (n=75)

Success	80% (60/75)
Non-success	20% (15/75)
Mortality	6.7% (5/75)
Implant not Successful	4.0% (3/75)
LVOT obstruction	1.3% (1/75)
Valve not seated properly	1.3% (1/75)
Patient unstable, procedure not	1.3% (1/75)
completed, unplanned circulatory support	
Re-intervention	2.6% (2/75)
Reposition device -resolve PVL	1.3% (1/75)
Bleeding with re-operation	1.3% (1/75)
Valve performance	6.7% (5/75)
Mitral valve gradient > 6 mmHg	5.3% (4/75)
Malpositioning/paravalvularleak	1.3% (1/75)

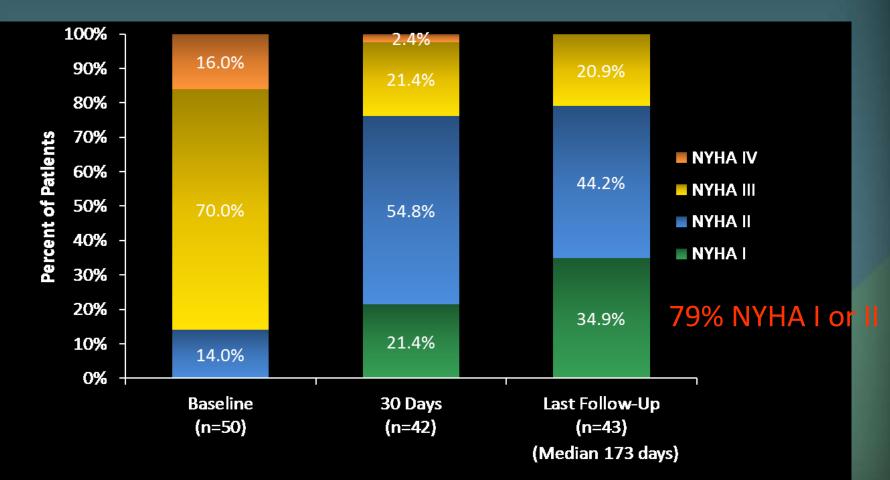
CARDIOVASCULAR SUM


David Muller, TCT 2017

CVRF

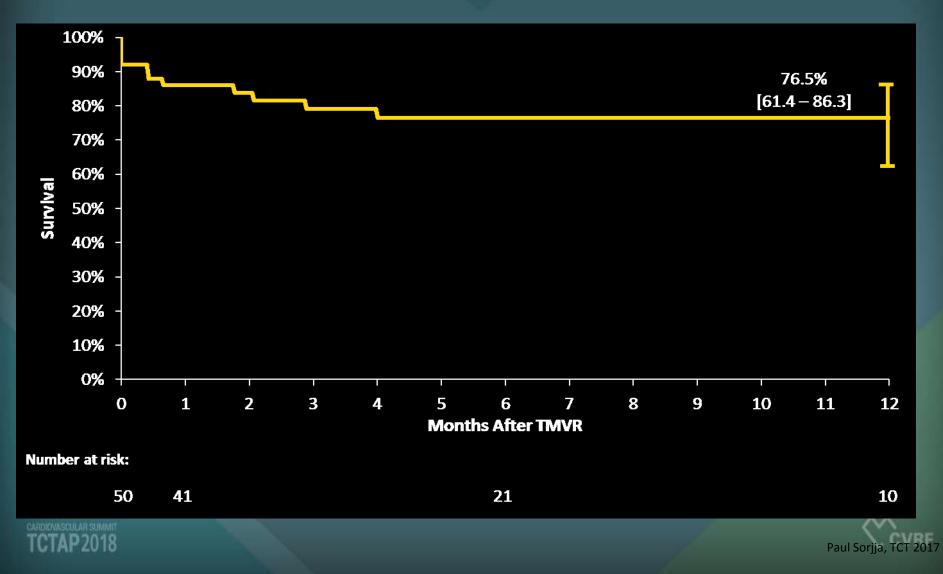
100% MR 0-1

Paravalvular: 3 (7.1%) Transvalvular: 8 (19.0%)


INTREPID GPS: MR SEVERITY

AP2018

Paul Sorjja, TCT 2017


INTREPID GPS: NYHA CLASS

Paul Sorjja, TCT 2017

INTREPID GPS: 1 YEAR SURVIVAL

TIARA: DATA ON CURRENT IMPLANTS

N=37	
0	
0	
0	
l	Longest f/u >3.8yrs
0	
1 (3%)	
0	
0	
4(12%)	
34 (92%)	
3 (8%)	
4 (12%)*	
2 (5%)*	
	0 0 0 1 (3%) 0 0 4(12%) 34 (92%) 3 (8%) 4 (12%)*

Anson Cheung, TCT 2017

CONCLUSIONS

- An unmet need for DMR and FMR
- Indications for TMVR will evolve as the devices evolve - "TAVR creep"
- There may not be a single device for all MR device based on mechanism, anatomy.
- Results to date promising when implant is successful – MR reduction is very good.
- Still not ready for prime time headed in the right direction.

THANK YOU

